
Academic Pinnacle  https://academicpinnacle.com  

Academic Journal of Science and Technology 
Vol. 6 (2023) 

https://academicpinnacle.com/index.php/ajst 

1 

 

Benchmarking Explainability Methods: A Framework 

for Evaluating Model Transparency and Interpretability 

Jorge Navarro 

Department of Information Technology, Pontifical Catholic University of Peru, Peru 

Abstract: 

The rise of machine learning models has brought about a need for interpretability and 

transparency, especially in critical domains. This paper presents a comprehensive 

benchmarking study of various explainability methods used in machine learning. We 

evaluate the performance, strengths, and weaknesses of popular techniques, including 

LIME, SHAP, and integrated gradients. Our goal is to provide a comparative analysis to 

guide practitioners in selecting appropriate methods for different applications. 
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1. Introduction: 

In recent years, machine learning (ML) has achieved remarkable success across various 

domains, from healthcare to finance, due to its ability to uncover complex patterns and 

make accurate predictions. However, as ML models become increasingly sophisticated, 

the need for interpretability and transparency has become more pressing. In critical 

applications, such as medical diagnostics or financial decision-making, stakeholders 

need to understand and trust the predictions made by these models. This demand for 

clarity has led to the development of explainability methods that aim to make machine 

learning models more transparent and their predictions more understandable to 

humans[1]. 

Despite the proliferation of explainability techniques, the selection of an appropriate 

method for a given application remains a challenge. Various methods, such as Local 

Interpretable Model-agnostic Explanations (LIME), SHapley Additive exPlanations 

(SHAP), and Integrated Gradients, offer different approaches to elucidating model 

behavior. Each method comes with its own strengths and limitations, which can impact 

its suitability depending on the context and specific needs of users[2]. The lack of a 

standardized framework for comparing these methods makes it difficult for 

practitioners to choose the most effective tool for their purposes. 
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This paper aims to address this gap by providing a comprehensive benchmarking study 

of several prominent explainability methods. We evaluate and compare LIME, SHAP, 

and Integrated Gradients across multiple metrics, including fidelity, consistency, and 

computational efficiency. By systematically assessing these methods, our goal is to offer 

a clearer understanding of their relative performance and to guide practitioners in 

selecting the most appropriate technique for their specific use cases. Through this 

comparative analysis, we seek to enhance the overall effectiveness and adoption of 

explainability methods in machine learning, ultimately contributing to more 

transparent and trustworthy AI systems. 

2. Explainability Methods: 

The rapid advancement of machine learning (ML) has given rise to a variety of 

explainability methods designed to enhance the interpretability of complex models. 

These methods aim to bridge the gap between intricate model predictions and human 

understanding. In this section, we provide an overview of several widely-used 

explainability techniques, each offering unique mechanisms for elucidating model 

behavior. 

Local Interpretable Model-agnostic Explanations (LIME) is a prominent method 

designed to interpret individual predictions by approximating the behavior of a complex 

model with a simpler, interpretable model in the vicinity of a given instance[3]. LIME 

operates by perturbing the input data and observing changes in the model’s predictions 

to build a locally linear surrogate model. This approach enables users to understand 

how the model arrived at a specific decision in a comprehensible manner. While LIME is 

versatile and applicable to a wide range of models, its performance can be sensitive to 

the choice of the local approximating model and the perturbation strategy used, which 

may impact the stability and fidelity of the explanations. 

SHapley Additive exPlanations (SHAP) provides a unified framework for interpreting 

model predictions based on Shapley values from cooperative game theory. SHAP 

attributes the contribution of each feature to the model’s prediction by computing the 

average marginal contribution of a feature across all possible subsets of features. This 

approach offers a theoretically sound method for understanding feature importance and 

ensures that explanations are consistent with the model’s output. SHAP’s main 

advantage is its ability to provide both global and local interpretability, but its 

computational complexity can be a drawback, especially for large datasets and complex 

models, potentially limiting its scalability. 

Integrated Gradients is a technique designed to attribute the prediction of deep learning 

models to individual input features by integrating the gradients of the output with 

respect to the inputs along a path from a baseline input (e.g., zero) to the actual input. 

This method aims to overcome some limitations of gradient-based approaches by 
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ensuring that the attribution is consistent and unbiased. Integrated Gradients provide a 

clear, principled way of attributing model predictions, which is particularly useful for 

neural networks. However, the method’s reliance on the choice of baseline and the 

integration process can introduce computational overhead and may affect the quality of 

the explanations provided[4]. 

In addition to LIME, SHAP, and Integrated Gradients, there are other notable 

explainability methods that offer different perspectives on model interpretability. 

Techniques such as Grad-CAM (Gradient-weighted Class Activation Mapping) provide 

visual explanations by highlighting regions in input data (e.g., images) that are 

influential in the model’s decision-making process. Anchors offer a rule-based approach 

to explanations by identifying feature values that lead to stable model predictions. 

Counterfactual Explanations present alternative scenarios where the input features are 

altered to achieve a different prediction, thereby helping users understand what changes 

could have led to different outcomes. Each of these methods contributes uniquely to the 

landscape of model interpretability, and understanding their distinct characteristics is 

essential for selecting the most appropriate technique for a given application. 

3. Methodology: 

To conduct a thorough benchmarking study of explainability methods, a structured 

methodology is essential for ensuring rigorous and meaningful comparisons[5]. This 

section outlines the approach taken to evaluate and compare the effectiveness of the 

selected explainability methods—LIME, SHAP, and Integrated Gradients. Our 

methodology encompasses the choice of datasets and models, the evaluation metrics 

employed, and the experimental setup. 

The choice of datasets and machine learning models is crucial for evaluating the 

performance of explainability methods. In this study, we use a diverse set of datasets to 

assess the methods’ applicability across various domains and types of data. These 

include tabular datasets such as the UCI Adult Income dataset, which provides a range 

of feature types and class distributions, as well as image datasets like CIFAR-10, which 

allows us to evaluate the methods in the context of deep learning models. For models, 

we select a mix of algorithms including decision trees, logistic regression, and 

convolutional neural networks (CNNs). This variety ensures that our benchmarking 

captures the methods' performance across different model architectures and 

complexities[6]. 

To systematically assess the explainability methods, we use a set of evaluation metrics 

that capture different aspects of interpretability and performance. Key metrics include: 

Fidelity: Measures how accurately the explanations reflect the underlying model’s 

decision-making process. High fidelity indicates that the explanations are consistent 

with the model's actual behavior. Consistency: Assesses the stability of explanations 
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when minor perturbations are made to the input data. Consistent explanations suggest 

that the method provides reliable and robust interpretations. Interpretability: Evaluates 

how understandable the explanations are to users. This metric is more qualitative and 

may involve user studies or surveys to gauge how effectively explanations convey model 

behavior. Computational Efficiency: Measures the time and resources required to 

generate explanations[7]. This is particularly important for large-scale models and 

datasets, where computational demands can impact the practicality of the methods. 

The experimental setup involves implementing and applying each explainability method 

to the chosen datasets and models. For each method, we generate explanations for a 

representative sample of predictions and evaluate these explanations using the defined 

metrics. The setup includes: 

Preprocessing: Data is preprocessed to ensure compatibility with the explainability 

methods, including normalization for numerical features and encoding for categorical 

variables. Implementation: The explainability methods are implemented using standard 

libraries and tools, ensuring consistency in how each method is applied across different 

models and datasets. Evaluation Process: Explanations are assessed based on the 

chosen metrics. Fidelity and consistency are measured through quantitative analysis, 

while interpretability is evaluated through user studies or expert reviews. 

Computational efficiency is assessed by recording the time and resources required for 

generating explanations[8]. Statistical Analysis: Statistical techniques are applied to 

analyze the results, including comparisons of mean performance across methods and 

significance testing to identify any notable differences. 

By employing this comprehensive methodology, we aim to provide a robust and 

insightful comparison of the explainability methods, helping practitioners make 

informed decisions about which techniques best meet their needs for model 

interpretability. 

4. Results and Discussion: 

In this section, we present the results of our benchmarking study of the explainability 

methods LIME, SHAP, and Integrated Gradients. We analyze the performance of each 

method based on the defined evaluation metrics—fidelity, consistency, interpretability, 

and computational efficiency. Our discussion aims to provide insights into the strengths 

and weaknesses of each method, as well as their suitability for various applications. 

The performance of each explainability method was evaluated across different datasets 

and models. LIME demonstrated strong performance in providing local explanations 

with high fidelity, particularly for simpler models like decision trees and logistic 

regression. However, its effectiveness varied with the complexity of the model and the 

choice of the local approximating model. SHAP excelled in delivering consistent and 

globally interpretable explanations, with its Shapley values offering a robust theoretical 
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foundation[9]. SHAP’s performance was notably strong in models with complex 

interactions, such as convolutional neural networks (CNNs), though it incurred higher 

computational costs. Integrated Gradients provided clear and principled attributions, 

especially in deep learning models, with consistent explanations. Despite its advantages, 

the method’s computational requirements were significant, particularly for large-scale 

datasets. 

The results indicate that no single method outperforms others in all aspects. LIME’s 

strength lies in its flexibility and ease of use for local explanations, while SHAP offers 

comprehensive and theoretically sound global interpretations. Integrated Gradients 

excels in scenarios where model complexity and interpretability are crucial but at the 

cost of higher computational overhead. 

Each method has its distinct strengths and limitations. LIME’s key advantage is its 

model-agnostic nature and ability to generate understandable local explanations. 

However, its sensitivity to the choice of the local model and perturbation strategy can 

affect the stability and accuracy of explanations. SHAP’s primary strength is its 

theoretical grounding and consistency, making it suitable for scenarios where a robust 

and comprehensive understanding of feature contributions is required. However, the 

computational complexity of SHAP can be a limiting factor, especially for large-scale 

applications. 

Integrated Gradients stands out for its principled approach to attributing predictions, 

particularly in neural networks, where it provides clear and consistent explanations. 

Nevertheless, its reliance on baseline selection and integration process can introduce 

additional computational costs, which may impact its feasibility for real-time 

applications[10]. 

To illustrate the practical implications of these methods, we present case studies 

highlighting their performance in specific scenarios[11]. For instance, LIME was 

particularly effective in explaining individual predictions of a decision tree model used 

for credit scoring, where its local explanations helped uncover decision boundaries. In 

contrast, SHAP was instrumental in analyzing feature importance in a deep learning 

model for image classification, offering insights into the impact of different features on 

classification outcomes. Integrated Gradients provided valuable attributions in a deep 

neural network for text classification, revealing which input tokens contributed most to 

the predictions. 

The findings from this benchmarking study have several implications for practitioners. 

LIME is recommended for scenarios requiring flexible and interpretable local 

explanations, especially in simpler models. SHAP is suitable for applications where a 

comprehensive and theoretically grounded understanding of feature contributions is 

critical, albeit with higher computational demands. Integrated Gradients is ideal for 
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deep learning models where detailed and principled attributions are needed, but 

practitioners should be mindful of the method’s computational requirements. 

By understanding the strengths and limitations of each explainability method, 

practitioners can make informed decisions about which technique best aligns with their 

specific needs and constraints. 

5. Implications and Recommendations: 

The results of our benchmarking study provide valuable insights into the selection and 

application of explainability methods in machine learning. For practitioners, the choice 

of an explainability method should be guided by the specific requirements of their 

application and the trade-offs between interpretability and computational efficiency. 

LIME offers a practical solution for generating understandable local explanations, 

making it suitable for applications requiring quick insights into individual predictions. 

SHAP, with its robust theoretical framework and global interpretability, is 

recommended for scenarios where a detailed understanding of feature contributions is 

essential, although practitioners should account for its computational demands. 

Integrated Gradients, while offering principled attributions, is best suited for deep 

learning models where interpretability and model complexity are critical 

considerations[12]. To maximize the effectiveness of these methods, practitioners 

should carefully evaluate their needs and constraints, including the nature of the data, 

the complexity of the model, and the computational resources available. Furthermore, 

ongoing advancements in explainability methods should be monitored, as new 

techniques and improvements may offer enhanced capabilities or address existing 

limitations. By aligning the choice of explainability method with the specific goals and 

constraints of their projects, practitioners can better achieve transparency, trust, and 

actionable insights from their machine learning models[13]. 

6. Conclusions: 

In this study, we have conducted a comprehensive benchmarking of several prominent 

explainability methods—LIME, SHAP, and Integrated Gradients—to assess their 

effectiveness and suitability for different machine learning applications. Our evaluation 

highlights the unique strengths and limitations of each method, providing a nuanced 

understanding of how they contribute to model interpretability. LIME excels in 

providing flexible and localized explanations, SHAP offers robust global insights with 

strong theoretical foundations, and Integrated Gradients delivers principled 

attributions, particularly for deep learning models. The findings underscore the 

importance of selecting an explainability method that aligns with the specific needs of 

the application, considering factors such as computational efficiency, interpretability, 

and the complexity of the model. As the field of machine learning continues to evolve, 
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ongoing research and advancements in explainability techniques will be crucial for 

enhancing transparency and fostering trust in AI systems. This study aims to guide 

practitioners in making informed decisions about explainability methods, ultimately 

contributing to more transparent, reliable, and understandable machine learning 

models. 
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